SELENOPHENE CHEMISTRY

LVII. Selenophene Series B-diketones with a Nitro Group in the Selenophene Ring*

Yu. K. Yur'ev, N. N. Magdesieva, and T. Lesyak

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 2, No. 6, pp. 902-904, 1966

Acylation of the copper complexes of benzoyl-, thenoyl-2-, selenoyl-2-acetone with 5-nitroselenophene-2-carbonyl chloride followed by hydrolysis of the resultant triketones is a method of synthesizing β -diketones containing the 5-nitroselenienyl group. ω -Benzoyl-, ω -thenoyl-2-, and ω -selenoyl-2-(5-nitro-2-aceto-selenophene), are prepared in that way, their IR and UV spectra are determined, and the dissociation constants measured. Cu²⁺ complexes are also prepared.

Among β -diketones with various other groups in addition to selenienyl-2 [1-4], those with a nitro group at position 5 in the selenophene are so far unknown. It was possible to synthesize this type of β -diketone by 5-nitroselenophene-2-carbonyl chloride acylation of copper complexes of acylacetones containing a group of an aromatic nature, followed by hydrolysis of the triketone. In this we synthesized ω -benzoyl-, ω -thenoyl-2-, and ω -selenenoyl-2(5-nitro-2-aceto-selenophenes) in high yield:

The UV spectra (in chloroform) of these β -diketones have three characteristic maxima, and the absorption curves are basically similar to those of other β -diketones, with other groups of an aromatic nature in addition to the selenienyl one. The presence in the β -diketone of the 5-nitroselenienyl group gives rise to an even greater shift of absorption maximum in the longer wavelength region than obtains with selenienyl-2 and -3 groups (Table 1).

 $Table \ 1$ $UV \ and \ IR \ Spectra \ and \ Dissociation \ Constants \ of \ \beta\ -Diketones \ Containing \\ Nitroselenienyl \ Groups$

The IR spectra show absorption bands characteristic of aromatic nitro compounds (Table 1), while bands characteristic of free carbonyl and hydroxyl groups (at 1700-1720 cm⁻¹ and 3500-3600 cm⁻¹, respectively) are absent, indicating that these β -diketones exist in the enol form.

^{*} For Part LVI see [7].

Determination of the dissociation constant by potentiometric titration [5] in water-dioxane solution (solubility of the reagents in water being negligible) showed (Table 1) that introduction of the nitroselenienyl group into β -di-ketone molecules increases the degree of dissociation.

When treated with copper acetate the β -diketones gave Cu^{2+} intramolecular complexes.

Table 2 Triketones and β -Diketones Containing the 5-Nitroselenienyl Group and the Cu²⁺ Complexes of the β -Diketones

R	Мр, °С	Formula	Found, %		Calculated, %		Yield,
			С	Н	С	Н	%
Acetylaroyl (5-nitroselenoyl-2) methanes							
Benzoyl Thenoyl-2 Selenenoyl-2		$C_{15}H_{11}O_5NSe \ C_{13}H_9O_5NSSe \ C_{13}H_9O_5NSe_2$	49.61; 49.63 42.13; 41.93 37.65; 37.55	3.11; 3.09 2.64; 2.57 1.98; 1.76	49.46 42.06 37.43	3.04 2.45 2.17	88 90 85
ω -Aroyl (5 -nitro -2 -acetoselenophenes)							
Benzoyl Thenoyl-2 Selenoyl-2	147—148 146—147 145—146	C ₁₃ H ₉ O ₄ NSe C ₁₁ H ₇ O ₄ NSSe C ₁₁ H ₇ O ₄ NSe ₂	48.67; 48.60 40.05; 40.35 35.27; 35.09	3.43; 3.53 2.25; 1.99 2.38; 2.35	48.46 40.25 35.22	2.82 2.15 1.88	94 92 93
Cu^{2+} complexes of ω -aroyl (5-nitro 2-							
acetoselenophenes)							
Benzoyl	326 (decomp.)	$C_{26}H_{16}O_8N_2Se_2Cu$	44.01; 43.92	1.93; 1.87	44.24	2.28	95
Thenoyl-2	307	$C_{22}H_{12}O_8N_2S_2Se_2Cu$	36.61; 36.43	2.15; 2.05	36.80	1.80	96
Selenenoyl-2	(decomp.) 311 (decomp.)	$C_{22}H_{12}O_8N_2Se_4Cu$	32.21; 32.34	1.22; 1.10	32.55	1.49	93

Table 2 gives physical properties and yields of triketones, β -diketones containing the 5-nitroselenieny1-2 group, and their copper complexes.

Experimental

Acetylaroyl (5-nitroselenoyl-2) methanes (1). 0.02 mole of the Cu complex of the aroyl (benzoyl-, thenoyl-2, or selenoyl-2) acetone and 0.02 mole 5-nitroselenophene-2-carbonyl chloride (mp 54° C [6]) in 100 ml dry CHCl₃ was stirred for 15 hr at 0° and then for 5 hr at 20° C, the products solution washed with 80 ml dilute HCl (1:1), the CHCl₃ layer separated off, dried over MgSO₄, the CHCl₃ vacuum-distilled off, and the residue recrystallized from MeOH-benzene (3:1).

 ω -Aroyl (5-nitro-2-acetoselenophenes) (II). 1.5 ml concentrated H₂SO₄ in 10 ml EtOH was added slowly to 0.01 mole triketone I, the mixture heated on a water-bath for 30 min, the precipitate separated off, washed twice with EtOH, and recrystallized from MeOH-benzene (3:1).

Complex of II with Cu^{2+} . Prepared by treating a saturated EtOH solution of II with aqueous Cu acetate solution; the precipitate was washed with EtOH and water. Yields, physical properties, and analyses of the triketones and β -di-ketones thus prepared and containing the 5-nitroselenienyl group, and of their Cu^{2+} complexes, are given in Table 2.

REFERENCES

- 1. Yu. K. Yur'ev and N. N. Mezentsova, ZhOKh, 31, 1449, 1961.
- 2. Yu. K. Yur'ev, N. N. Magdesieva, and V. V. Titov, ZhOKh, 32, 3252, 1962.
- 3. Yu. K. Yurev, N. N. Magdesieva, and V. P. Brysova, ZhOKh, 33, 2578, 1963.
- 4. Yu. K. Yur'ev, N. N. Magdesieva, and V. V. Titov, ZhOKh, 33, 2577, 1963.
- 5. A. Albert and E. Serjeant, Ionization Constants of Acids and Bases [in Russian], Khimiya, Moscow-Leningrad, 1964.
 - 6. Yu. K. Yur'ev and E. L. Zaitseva, ZhOKh, 29, 3644, 1959.
- 7. Yu. K. Yur'ev, M. A. Gal'bershtam, and I. I. Kandror, KhGS [Chemistry of Heterocyclic Compounds], 897, 1966.

Lomonosov Moscow State University Kopernik Torum State University